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Consider a simple optimization problem.  You would like to choose the best features for a laptop 
to maximize total sales.  Based on extensive market research, you have identified five 
configurations which produce weekly sales (in millions) of $4.5, $4.8, $5.0, $5.3, and $5.2. 
Which configuration should you use?  Hmm.  Looks like configuration 4 is the winner.  Not too 
hard (and the astute reader will recognize that this is an integer programming problem!).  Of 
course, we realize that there are much more complex deterministic integer programs that are 
genuinely difficult. 

The reality is that the actual sales are random.  Assume 
now that the sales you will achieve for each 
configuration has a mean given by the numbers above, 
with standard deviations of $1.3 (million), $1.6, $1.8, 
$0.9 and $1.3 (the beliefs are depicted in figure 1).  
Now which would you do?  Since we really care about 
averages over long periods of time, you would again 
choose the fourth configuration because it is expected 
to yield the highest average sales.  We have just solved 
a very simple stochastic optimization problem. 

Yet, even this view of the problem is not realistic.  In 
actuality, not only are sales random, we are not even sure of the distribution.  If we choose 
configuration 4 and observe average sales of $4.7 million for a few weeks, we would not treat 
this as random observations from our distribution.  We would probably adjust our distribution 
downward, since we view our original distribution as just an estimate, while $4.7 is an 
observation from the true distribution.  Given that we are uncertain about our uncertainty, 
choosing the fourth configuration may not, in fact, be the best because it ignores the value of the 
information we gain from future sales figures.  Note that we have a lot more confidence about 
the sales from configuration 4 than configuration 3.  If we try selling configuration 3, we may 
learn that the true value for average sales is actually higher than the sales for configuration 4.  

This is a simple example of a problem where we have to consider the value of information.  Such 
problems arise in a wide range of settings in business (what is the best price for a product), 
engineering (what is the best material for a device), science (what is the best molecular 
compound for curing cancer), politics (where should we run polls for a candidate), policy (what 
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tax should we put on fertilizer to control runoff into lakes), medicine (what is the best treatment 
for a disease in a particular patient), the internet (which movies should Netflix show when you 
log in to maximize rentals), and transportation (how do we find the best path over a network).  In 
each case, we are making decisions that yield information that may influence future decisions. 

Given the breadth of applications, it is useful to consider a few major problem classes.  It is 
important to first distinguish problems based on whether they use online learning (learning in the 
field, as occurs when we observe sales) or offline learning (learning in the laboratory, where we 
do not care about bad outcomes as long as they lead to a good design).  Offline learning 
problems are typically described under names such as ranking and selection (where the choices 
are discrete), stochastic search (where we are often optimizing a continuous function), and 
simulation-optimization.   

Online learning problems are perhaps best known as the multiarmed bandit problem.  This name 
derives from the story of trying to find the best slot machine (sometimes referred to as “one-
armed bandits”) by trying out each slot machine.  We may try a slot machine that appears to be 
giving lower payouts in the hope that the actual payout rate is higher than we think. But we run 
the risk that we were right in the first place, which means we have to live with the potentially 
lower payout.  This is the tradeoff we make when we have to find the best price of a product by 
varying the price and observing sales.  We might learn that a higher price returns higher revenue, 
but we may learn that the market is unwilling to buy at the higher price, which means that we 
have to incur lower sales as the price of this information. 

The multiarmed bandit problem can be formulated as a multidimensional dynamic program with 
continuous states, but there is no known algorithm for solving this problem.  In the 1970’s, J.C. 
Gittins introduced what are now known as “Gittins indices” where you compute a statistic for 
each alternative (“bandit”) and choose the bandit with the highest value.  This was viewed as a 
breakthrough, except for the fact that computing these indices is also computationally very 
difficult.  A separate community in computer science discovered a class of policies known as 
“upper confidence bounds” which enjoys a kind of optimality property in the form of a bound on 
how often you try suboptimal alternatives.  The simulation community encounters this problem 
when testing designs using Monte Carlo simulation, and they have developed policies suited to 
this setting, often referred to as “optimal computing budget allocation” rules. 

It is possible to approach the learning problem using classical and familiar ideas from 
optimization.  The operations research community is very familiar with the use of gradients to 
minimize or maximize functions.  Dual variables in linear programs are a form of gradient, and 
these are what guide the simplex algorithm.  Gradients capture the value of an incremental 
change in some input such as a price, fleet size or the size of buffers in a manufacturing system.  
We can apply this same idea to learning. 



Assume for the moment that we have the potential to observe (“measure”) the value of M 
different alternatives.  These may be the sales for different laptop configurations or M different 
prices.  Perhaps we are using a business simulator and we have M different configurations of a 
factory layout or design of a logistics system.  An observation might consist of a week’s worth of 
sales figures, or a run of our business simulator.  After n observations spread across the M 
alternatives, we have an estimate of the performance of each alternative, but we recognize that 
they are imperfect, as depicted by the spreads in the distributions in figure 1. 

Given our state of knowledge, we have an implementation decision, which captures the decision 
we need to make with our information.  In some 
cases, the measurement decisions and 
implementation decisions are the same (such as the 
best laptop configuration or the price we should 
charge), but in other cases they are different.  For 
example, we might measure the time to traverse a 
link in a network (the measurement decision), after 
which we have to find the best path (the 
implementation decision) [1].  We make our 

implementation by choosing the alternative that seems to be the best, which is some form of 
deterministic optimization problem (such as a shortest path problem).   

How do we estimate the value of a measurement?  We might compute the expected marginal 
value of the implementation decision from a measurement.  For example, if we decide to 
measure the time on link 6-8 in figure 2, the outcome of the measurement may identify a shortest 
path that is better than the path we were going to take.  We refer to the expected marginal value 
of this measurement as the knowledge gradient.  The knowledge gradient policy chooses to make 
the measurements that offer the highest value. 

The term “knowledge gradient” was introduced by Peter Frazier while doing his doctoral 
research (Peter is now a professor at Cornell University).  Peter showed that for offline learning 
problems, the knowledge gradient is myopically optimal (by construction, it is the best you can 
do if you can only make a single observation) and it is asymptotically optimal (given an 
unlimited budget, it will eventually find the optimal solution).  These two properties seem to 
explain why it works well empirically for intermediate budgets. 

A second Ph.D. student, Ilya Ryzhov (now a professor at the University of Maryland), then 
derived the knowledge gradient for online learning problems.  The online knowledge gradient is 
related to the offline knowledge gradient through a simple, one-line equation that captures the 
tradeoff between the expected value from making a particular choice (such as selling a laptop 
with a particular configuration, or selling the laptop at a price), and the value of information in 
the future.  With this simple equation, Ilya has provided a bridge between the offline ranking and 
selection and stochastic search communities, and the online bandit community [2]. 

Figure 2‐Network showing beliefs about the cost on 
each link initially and (for link 6‐8) after an observation.



With this result in hand, it is useful to stand back and think about the much broader class of 
learning problems that arise in real applications.  We have already talked about problems that 
have distinct observation/measurement decisions (such as polling a population) and 
implementation decisions (such as where a candidate spends time campaigning).  A separate and 
fundamental dimension is the belief model.  Above, we assumed a lookup table belief model, 
where we have a belief (an estimate) of the value of each discrete alternative.  The classical 
literature on learning assumes independent beliefs (if we observe that the sales from a particular 
laptop configuration is higher than expected, it tells us nothing about other alternatives).   

It seems that in most real-world applications, we have the situation of correlated beliefs.  For 
example, two laptop configurations may feature the same size screen, which turns out to be a key 
determinant of sales.  If one configuration with a large screen sells well, it is likely that other 
configurations with the same screen will also sell well.  Peter Frazier developed a fast, simple 
algorithm for computing the knowledge gradient in the presence of correlated beliefs which 
dramatically enhances the power of this strategy [3].  This simple idea allows us to consider 
hundreds of laptop configurations, and still make meaningful judgments after just a few dozen 
observations. 

But what if we need to find the value of continuous variables such as prices or the size of buffers 
in a manufacturing simulator?  Or, perhaps we want to find the best set of 15 ice cream flavors 
(out of 31) to put on display (over 300 million combinations)? We might replace our lookup 
table belief model with a statistical model which allows us to estimate the value of an alternative 
in terms of its attributes.  This strategy was used in a project on drug discovery by Diana 
Negoescu, where the knowledge gradient was used to 
sequence experiments to discover the best molecular 
compound (out of 87,000) to cure a form of cancer using 
just a few dozen experiments [4].  Rather than finding 
flavors of ice cream, this problem required matching 
molecular fragments onto sites of a base molecule 
(labeled X and Y in figure 3).  

The different subcommunities that have addressed the 
problem of collecting information efficiently have been largely confined to well-trained 
researchers armed with Ph.D.’s.  At Princeton, I teach this material each year to 30 or 40 
undergraduates in the Department of Operations Research and Financial Engineering who have 
all taken a course in probability and statistics.  Students learn a range of methods for efficiently 
collecting information, ranging from simple heuristics to the knowledge gradient, but also 
covering other optimal learning problems such as Fibonacci search and the secretary problem. 

Along the way, we try to identify insights that are separate from any particular algorithm or 
policy.  One example is the paradox of too many choices.  If you have 50 alternatives and a 
budget to perform 50 observations, it makes sense to test each alternative once and then choose 

Figure 3‐Base molecule with two sites for 
attaching additional fragments. 



the best.  This strategy fails when observations are noisy.  If there is enough uncertainty in an 
observation, a better strategy might be to choose 10 alternatives at random, and then use your 
budget of 50 observations to choose the best from this set of 10 [5].  

The focus of the course, however, is on modeling, and learning how to think about an optimal 
learning problem.  The course emphasizes basic ideas such as measurement and implementation 
decisions, belief models, the concept of a learning policy, and how to compare two learning 
policies. Perhaps most important is developing an appreciation of when it is important to think 
about the value of information.  Many learning problems benefit from a prior distribution of 
belief (reflecting past experience or previous observations), and are naturally set in a Bayesian 
learning framework.  This creates a natural testing environment for a policy, which consists of 
three steps: 1) assume a truth, 2) use a policy to try to discover the truth, and 3) then repeat 1000 
times on many different truths to test the ability of the policy to work over many truths. 

New ideas are best learned in terms of an application, and for this reason the course requires that 
the students (working in two-person teams) identify their own learning problem, and then 
compare the performance of different policies in the context of this problem.  Applications have 
included topics that include maximizing ad-clicks, designing polling strategies for political 
campaigns, identifying the best diabetes treatment, pricing apps for smart phones, and solving 
complex protein folding problems.  Each team gives a short presentation of their problem 
(without numerical results) so that everyone benefits from seeing the range of applications. 

This article offers little more than a taste of this emerging field.  Much more information is 
available at the website http://optimallearning.princeton.edu, which provides additional 
information, downloadable software and papers, a much longer list of applications, and some 
information on a new book, Optimal Learning (co-authored with Ilya Ryzhov), which is the 
textbook for the course.  It is not possible to do justice to the many people who have contributed 
to the field in this short article; the bibliographic notes that accompany each chapter provide a 
guided tour of the literature.   
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